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Abstract—We consider the energy minimization problem for elustic bars with continuous damage,
where damage evolution is a function of strain evolution. Free energies with penalization terms are
shown to be compatible with the Clausius—Duhem inequality.

For free energies with and without penalization we show that minimizers of the total free
energy must be states where damage evolution vanishes.

I. INTRODUCTION

The view that the forming of macrocracks is the result of a loss of stability of a continuous
damage field has gained wider acceptance in recent years (Lemaitre, 1986). Structures can
accommodate moderate damage ficlds without failing (what moderate means depends on
the particular case). Although a great amount of progress was made in this direction, we
are still not close to a complete understanding of the passage from continuous damage to
fructure. There may not be a unique answer : ductile damage and fragile damage may lead
to fracture by different mechanisms and the key to understanding cach case may be different,

The problem that interests us here is that of the stability of damaged states, With this
question in mind we shall be mainly concerned with the energy minimization problem for
a one-dimensional bar.

We shall begin by deseribing the basic mechanics of the problem, that is the type of
evolution laws for damage and the stress-strain relations that we take for experimental,
and therefore immutable facts, We shall consider elastic materials, not necessarily linear,
where damage evolution is proportional to strain evolution.

In Section 3 we shall review the argument that leads from the Clausius-Duhem
incquality to the well known thermodynamic relutions between the energy, entropy and
stress functions.

Our first important observation is that a free energy function—more general in form
than the one normally derived—is still compatible with the Clausius-Duhem inequality.
This will be called a free energy with penalization.

In Section 4 we shall look at the energy minimization problem for free energy functions
without penalization and introduce for Section 5 the consideration of penalization terms.
In Scctions 4 and 5 we show that minimizers of the total encrgy cannot be states where
damage evolution is possible. That is, there are states where damage evolution is possible
and these are disjoint from states of admissible equilibria. This we shall argue isin agreement
with the phenomenon of stress accommodation scen in traction experiments. In Section §
we also show how a relation might be established between the penalization function and
the evolution law for damage.

2. DAMAGE MECHANICS

Working conditions may alter the structure of a given material and consequently its
behavior. Frequently this alteration in structure consists in the appearance of microvoids
or microcracks. These can be described by a continuous damage field which measures their
density (Lemaitre and Chaboche, 1985). The amount of damage at each point then evolves
as a consequence of the continuing thermomechanical working. The law that governs this
evolution is a characteristic of each material and each type of damage. Damage is an
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Fig. 1. Damage evolution curve on the &, D plane.

irreversible process (at least we shall consider it to be s0): thus, the time derivative of the
damage variable must be positive (or zero).
In this work we shall consider damage evolution laws of the following type:

D = g(e*. DY(E*D H

where D denotes a scalar meusure of damage, £* is a scalar measure of deformation, g is a
positive function, (x> = max {x.0} and a superposed dot denotes a time derivative,

In one-dimensional problems &* is equal to the diplacement gradient ¢. We shall
normalize D so that it stays between 0 and 1.

In onc-dimensional problems for monotone evolutions of deformation, (1) leads to the
differential equation

dn = ¢(s. D) de (2)
whose integral we shall assume to exist and be given in the form of a monotone function
D= G(e)
G() =0, (R)]
The eritical value ¢, is the strain at which damage evolution begins.
The set £, = {(£. D)ig(e, D) > 0} is the sct of the &, D plane where D > 0t é > 0, Let
I" be the region enclosed by the graph of Gand thelinese =0, D =0 and D = |. We have
the following possibilities for P,.
(1) P, =T In this case D > 0 whenever & > 0.
(I1y P, = jt = the gruph of G. In this case damage increases only along the curve g,
and there is a (trivially) convex set
0 < e < G YDy,
which governs the evolution of damage.
(I e P, [, ie. Devolves on a ““fat™ sct to the left of y in Fig. 1.

In Figs 2-4 we show examples of possible evolutions of (D, &) indicated by the arrows. In
these figures we have drawn T (the set under p) convex. We shall assume that to be always
the case.

>
D

Fig. 2. Two evolution curves for type [. One is monotone and follows the curve p and the other has
two points of discharge.
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Fig. 3. Same as above for type I1.

>

D
Fig. 4. Same as above for type HL

g=¢/(1~D)

dD =g de

t=06"Y(D)=J2D-DY) e,

which gives a convex set T,

Remark. The function g determines a vector ficld on the (D. &) plane along which D

and & evolve.,

Example. Type HI (see Fig. §). Similar figures can be drawn for types [ and 1L

>
D

Fig. 5. (D. g} evolution follow the arrows. Starred lines are two way.
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Stress-strain relations
In our choice for a constitutive relation we shall consider only elastic materials.
Letting ¢ denote the stress we shall assume that

(e, Dy=EWD)Y  r>0. 4)
Here E(D) denotes the modulus of elasticity ; as a function of damage it satisfics

E(D)< O
E(h=0.

In many applications one can take
a{e. D) = E;(1 - Dk

characterizing a linear elastic material with effective stress o, {Lemaitre and Chaboche,
1983).

o. =a/(l-D).

3. DAMAGE THERMODYNAMICS

The actual thermodynamical evolution of a system must satisfy the laws of thermo-
dynamics. Since this must hold for any subsystem, on regions where the ficlds defining
the thermodynamical process are smooth, one can derive the so-calied focal forms of these
faws. A combination of the first law (where the Kinetic encrgy term is cancelled through
momentum balance) with the second law yiclds the Clausius - Duhem inequality

po+pST—a:é+(1/T) grad T g < 0. (5)

Here pis the mass density, & is the Helmholtz free cnergy, S s the entropy, T is the
temperature, grad T is the temperature gradient and ¢ is the heat flux vector.
Suppose now that ¥, S, ¢ and ¢ are differentiable functions of &, T, D and gradT';
then using the chain rule on @ and (5), we get
pED T+ S)T+(p &/ Ce—0): é+p DD D+ 1T grad T+ ¢
+p &b/ 0gradT grad7T < 0. (6)
It e, T. D, gradT and their time derivatives can be chosen independently, one cun show
(Coleman and Noll, 1963) that the following relations must hold.
/2T (e, T.D) = —S(e. T. D)
plobiee (e T,D)y=0o(c. T. D)
cb/igradT (6. T.D) =0
D (ET.D)<0 (N

and
gradT ¢ € 0.

On the other hand. in the problem that interests us D and ¢ are not independent since
they must satisfy (1). In this case eqns (7) are still sufficient for (6) to hold for all pro-
cesses : but they are no longer necessary.

Indeed, if ¢ 0. 7 = 0 and gradT =0
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pcéd/de—a =0
andifé >0, T=0and gradT = 0,
pi®/ie—o+pg 0®/D 2 0.
Combining (8) and (9)
0<pi®/de~0 < —pg CP/OD.
In particular, since g 2 0.

ov/éD < 0.
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8)

®

(10)

When g = 0. (8) and (10) yield the usual (7),. but on P, = {(c. D)|g(e. D) > 0}. (10)

may be satisfied non trivially.
For instance we may have

®(e. D) = O(e, D)+ h(e, D)
with
pod/de=0a
as long as the function A satisfies
{e. D) (e, D)y> 0 = P,.
The function i will be called in this work a penalization term.

Example. With
gle,. D)y =1,
O, D) = E[2(1 = DY +(E e "%)/6
and
g=pE(l—-D)

give

—p 0D/OD = p(e*j2+e "} |6)E 2 pEe P} 2 = p db/de—0 = 0.

4. ENERGY MINIMIZATION WITHOUT PENALIZATION

In this section we shall consider the energy minimization problem for a one-dimensional

bar with damage and with the free encrgy function

O, D) = f o(e, D) de = E(D)*'/(r+1).

Throughout we shall take for granted that equilibrium states are those for which the
total free energy—including that of the external loads—is stationary, and that minimizers

of this encrgy are stable (locally if the minimizer is local).

Consider a one-dimensional bar of length L whose deformed length 2 is imposed. In

an isothermal situation one looks for minimizers of
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L

&fe. D] = f p®(e, D) dx (11)

0

among all states (. D}:{0. L] R~ x [0. 1] such that

L
f edy =4,
0
In (11). p is the reference density.
Suppose now that there exists a minimizer (£.D) of & and let us take a variation
0¢ = w(.x) satisfying the constraint

[
f o dy = 0. (12)

L. =xel0,L])jw(x)>0)
el Llex) < 0).

Thus, L, and L are the parts of the bar where the deformation is increased and
decreased, respectively.

Then
& D = ﬁ | $p O (8 DY+ /oD (£, D)yt D)les dx
+ ﬁ § 00/ (8 D)o dx  (13)
sincedD =0ilde €0, and oD =gwin L, .

It we take

{

w(x) = u(x)—( l/L)J . udy

for arbitrary u, evidently o satisfies (12). Then, after changing orders of integration, (13)
can be written as

‘. ‘.
O0&[E Dlu = J {Il(.\‘)— J H(S) d:}u(,\') dx

] }

where

p W /3e (E(x), D(x))+ p 60D (£(x). D(x)g(E(x), D(x)) ifvel,
HOO =5 owp20 G By ifxel .

If (7. D) is a minimizer
O8[E D=0

for any u integrable on [0. L]. That is. using a classical lemma in the Calculus of Variations,
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L
H(x) > (lfL)J H() dS
0
which in turn implies
L
H(x) = (l/L)j H(EydS=C
0

since a function cannot be greater than its average everywhere. Therefore

pé®/ee (E.D)+p é/eD (,D)gE.D)=C onlL, (14a)
and
géw/ee(€.DY=C onlL._ (14b)
must hold.
If we take now d¢ = —w. L, and L_ change places. Since the constant C depends

only on the pair of functions (£, D). (14) implies that
D/oD (8. D)g(i. Dy =0.
Thus. unless (5 D) takes a value where /0D = 0, minimizers of the total energy
must be at points were ¢ = 0; that is where 0D = 0 for any (small) 0« positive or negative,

In particular if evolution is of type 1, no stete may be a minimizer of the energy!

Remark. A simpler argument than the one presented above can be used if one is
willing to take for granted that the mechanical cquilibrium condition

j 00/ (£, D) = const.

holds everywhere, Because then it follows at once from (13) that
38[E Dlw = f § d®]OD(E, D)y (&, D)yw dx
,‘P

and since fd/eD <0and g 20,38 2 0ifand only if g 0D /0D = 0. [

Duamage evolution is an irreversible process. Since 0/ 2D < 0, absolute minimizers of
the total energy are states for which D = 1. But there are plenty of observable equilibria
that are not absolure minimizers. Let us accompany the evolution of a system through a
sequence of metastable equilibria : consider the problem of a one-dimensional bar in which
the stress 6* at one end is controlled and let us accompany the evolution of the bar as o*
varies. For a sequence of equilibria, cach state must satisfy the mechanical equilibrium
condition

a(x) = o*.
That is,
E(DQ) (x) = o*
or

&(x) = [o*/ E(D(x)]"". (15
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Fig. 6. Damage evolution at constant stress.

For given o*, equilibrium states must lie on the curve 6, in the ¢, D plane. defined by
e = [o*/E(D)])"". (16)

An easy computation shows that £(D) < 0 and E”(D) < 0 imply that £ (D) > 0 and
£(Dy>0ifr> 0.

Example. In the linear case
o= E,(1-D)
and
e= Fyo*/{1 =D).

Thus, (D) > 0 and (D) > 0 as is casily veritied.

Let us now plot the curve 0,. defined by (16) with the curve u defined by (3) (see Fig.
6).

Suppose that damage evolution is of type I, that is damage evolves only along the
curve g and that T (the region below g) is convex. Any state in I can be attained following
the evolution law. States above g cannot be attained. Thus, there is a critical value of stress
o, above which there is no solution satisfying mechanical equilibrium. This is well in
agreement with the softening phenomenon found in experiments.

For a* = a,. the curves 0,. and p are tangent at their (single) intersection point, which
lies on P,. We have seen that such 2 point cannot be a minimizer of the total encrgy for
imposed length and is, therefore, unstable. To see that it is also unstable under imposed
external load, fet us look at the free energy of the system including that of the external loads

(3
{pb(e, Dy—a*c} dx.

fmm=J

0

Supposc £, D is a minimizer of #. Then, with the same notation as in (13).

a%@ép:f {f é/Ce (5, D)+p é®/2D (£, D)gE. D)—o*}w dx

1,

‘e

+ j {§ &} (£, D)—0*}w dx
L

for arbitrary w.
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Therefore we get (14) with o* replacing C and the same conclusion follows. namely
that minimizers must satisfy

¢o/¢D (2, D)g(E D) = 0.
Since for the cases we consider here
®(e, D) = E(D) '/ (r+1)
and we assumed that
E(D)<0

and

c®/dD <0,

points in P, cannot be stable under applied external loads.
The derivative of ® along the curve 0,. defined by (16) is

db/dD = o/ s de/dD 40D/ ID

an
= —(E (DY Y r(r+1) > 0.
Thus, for fixed stress, the free energy is smallest when D is smaller.
On the other hand
d(ph —za*)/dD = (§ D/t —0*) de/dD+ 00 /3D < 0. (18)
since
pob/de=0=a*
and

c/oD <.

Therefore, for fixed stress, the total free energy of the system is smaller for larger D.
This, though, does not imply that a state on 0,. is necessarily unstable. This will only be
the case on parts of 0,. where g > 0.

If ¢ > 0 only on u. the states nearer to it are less stable since it takes smaller per-
turbations to bring them to a point (in g¢) where they can evolve to states of smaller energy.

If a state (e, D) is in 0, it satisfics the Euler-Lagrange necessary condition 6* = o for
a minimizer, Further necessury and sufficient conditions have to be met to make that state
a minimizer (local of global). Global minima cannot be found since (18) holds along the
states that satisfy this necessary condition. The state on this curve that has the smallest
value of p —ea* is unstable since it lics on u a region of possible damage cvolution. A
local minimizer (£, D), on the other hand, is only required to satisfy

pO(E D) ~io* < pd(e, D) —co* (19)

for any & D in an admissible neighborhood ; that is, for states that are near along the
possible curves of crolution.

For a state where g = 0, (19) must hold for all ¢ near to &.

Thus, a state (£, D) is a (strict) local minimizer of # [, D] if its image is on the curve

0,—strictly below y—and
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Fig. 7. An example of & penalization function.

&*®/% (5.D) 2 0.
The convexity of @ in ¢ and D is not relevant. Note that
O/ e = rEDY .

Conclusion. For a free energy function without penualization, an evelution law for
damage of type 1 is thermodynamically inconsistent since no equilibrium state is a local
minimizer of the total free energy.

For an cevolution law of type 1, states whose image lie on the curve of evolution g
cannot be minimizers. Any state in 0,. 0 lg = 0! may be a relative minimizer, but not
an absolute one. The state of the system must be determined from the evolution. Non-
homogencous initial data for damage will lead to non-homogencous local minimizers.

Similar considerations hold for evolutions of type 111

Since evolution must occur along g (type ), but there are no cquilibrium states on this
curve, the actual evolution of i system will show at every rest point a small accommodation
corresponding to the motion of the system to a nearby stable state.

5. THE MINIMUM PROBLEM FOR A FREE ENERGY WITH PENALIZATION
We have seen in Section 3 that a free energy function of the form
® (e, D) = BO(e, DY+ 1e. D)
with
b/ =q
is computible with the Second Law of Thermodynamics if
hite 20 20
and
Chice+g OhjOD € —g Ob/CD ifg>0. (1)

Where g = 0 we must have h = 0,

For damage evolution of type I where g # 0 only on a curve g, the condition
g = 0=h = 0 requires /1 to be either identically zero or discontinuous. The first case was
already considered and the second violates the hypothesis of differentiability of ® used in
the derivation of (20) and (21). Here we shall simply say that a free encrgy with penalization
is incompatible with damage evolution of type II instcad of reconsidering the Clausius~
Duhem inequality for discontinuous ®.

Supposc now that g is continuous. Then £, has a noncmpty interior. and in this set
(20) and (21) hold (Fig. 7).
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We now suppose that
L
Fle. D} = J {p® (e, D)+ ph(e, D)—a*e} dx

0
has a minimizer & D. Then, with the notation of (13) and é= &(e. D) etc.. it must satisfy
O0F [§. Dlw = f {7 E&,"Ea-kﬁ chjce+pg oD+ 5§ Ch/éD—6*)w dx

L,
+ j ] odice+p Shife~o*w dx < 0.
L

for all integrable » on [0, L].
This yiclds the pointwise conditions

—{p (?%i(?&: +pdijce—a*) >0
and
il o [Ce+p O] Oc+ 5§ ob [aD+ G hjoD —a* 20,
Adding, we get
fi((?(T) [OD [ =0,

which is compatible with 21) if und only if g = 0.

We are again led to the conclusion that equilibrium occurs oaly at points where g = 0
as in the case without penalization. Thus, for the description of equilibrium states a function
with penalization is indistinguishable from one without. In particular, cvolutions of type |
are thermodynamically inconsistent.

The only type of evolution where penalization might be of use is in evolutions of type
H1. Note that, since g may be strictly positive only on a narrow band around g, in
experiments it might be diflicult to distinguish types H and HI; specially with equilibrium
nmeitsurements,

We have thus shown that free encrgies with penalization are compatible with thermo-
dynamics and that in equilibrium they reduce to ordinary free energies without penaliza-
tion. We conjecture that penalization might be useful in caleulations where dynamics play
an important role.

Remark, Above we have assumed that g is a given function: and from it we have
derived restrictions on the penalization function A, One muay consider that A is given and
that g is {partiaily} determined by

g2 ohfdej(—=ChicD—CM)eD)

which comes from (21). One could, for instance, take g satisfying the relation above with
equality.
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